Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ultra‐low frequency (ULF) waves radially diffuse hundreds‐keV to few‐MeV electrons in the magnetosphere, as the range of drift frequencies of such electrons overlaps with the wave frequencies, leading to resonant interactions. Theoretically this process is described by analytic expressions of the resonant interactions between electrons and ULF wave modes in a background magnetic field. However, most expressions of the radial diffusion rates are derived for equatorially mirroring electrons and are based on estimates of the power of ULF waves that are obtained either from spacecraft close to the equatorial plane or from the ground but mapped to the equatorial plane. Based on recent statistical in situ observations, it was found that the wave power of magnetic fluctuations is significantly enhanced away from the magnetic equator. In this study, the distribution of the wave amplitudes as a function of magnetic latitude is compared against models simulating the natural modes of oscillation of magnetospheric field lines, with which they are found to be consistent. Energetic electrons are subsequently traced in 3D model fields that include a latitudinal dependence that is similar to measurements and to the natural modes of oscillation. Particle tracing simulations show a significant dependence of the radial transport of relativistic electrons on pitch angle, with off‐equatorial electrons experiencing considerably higher radial transport, as they interact with ULF wave fluctuations of higher amplitude than equatorial electrons. These findings point to the need for incorporating pitch‐angle‐dependent radial diffusion coefficients in global radiation belt models.more » « less
-
Daedalus MASE (Mission Assessment through Simulation Exercise) is an open-source package of scientific analysis tools aimed at research in the Lower Thermosphere-Ionosphere (LTI). It was created with the purpose to assess the performance and demonstrate closure of the mission objectives of Daedalus, a mission concept targeting to performin-situmeasurements in the LTI. However, through its successful usage as a mission-simulator toolset, Daedalus MASE has evolved to encompass numerous capabilities related to LTI science and modeling. Inputs are geophysical observables in the LTI, which can be obtained either throughin-situmeasurements from spacecraft and rockets, or through Global Circulation Models (GCM). These include ion, neutral and electron densities, ion and neutral composition, ion, electron and neutral temperatures, ion drifts, neutral winds, electric field, and magnetic field. In the examples presented, these geophysical observables are obtained through NCAR’s Thermosphere-Ionosphere-Electrodynamics General Circulation Model. Capabilities of Daedalus MASE include: 1) Calculations of products that are derived from the above geophysical observables, such as Joule heating, energy transfer rates between species, electrical currents, electrical conductivity, ion-neutral collision frequencies between all combinations of species, as well as height-integrations of derived products. 2) Calculation and cross-comparison of collision frequencies and estimates of the effect of using different models of collision frequencies into derived products. 3) Calculation of the uncertainties of derived products based on the uncertainties of the geophysical observables, due to instrument errors or to uncertainties in measurement techniques. 4) Routines for the along-orbit interpolation within gridded datasets of GCMs. 5) Routines for the calculation of the global coverage of anin situmission in regions of interest and for various conditions of solar and geomagnetic activity. 6) Calculations of the statistical significance of obtaining the primary and derived products throughout anin situmission’s lifetime. 7) Routines for the visualization of 3D datasets of GCMs and of measurements along orbit. Daedalus MASE code is accompanied by a set of Jupyter Notebooks, incorporating all required theory, references, codes and plotting in a user-friendly environment. Daedalus MASE is developed and maintained at the Department for Electrical and Computer Engineering of the Democritus University of Thrace, with key contributions from several partner institutions.more » « less
An official website of the United States government
